MathExcel Worksheet C: Exam I Review

1. Evaluate the following integrals:

(a)
$$\int \cos^5(x) \sin^2(x) dx$$

(d)
$$\int_{\pi/2}^{\pi} \sin^2(x) \sin(2x) \cos(x) dx$$

(b)
$$\int \frac{1}{\sqrt{4-x^2}} dx$$

(e)
$$\int_{1}^{\sqrt{3}} \arctan(1/x) dx$$
 (Hint: integrate by parts with $u = \arctan(1/x)$ and $dv = dx$)

(c)
$$\int \frac{-2x}{\sqrt{4-x^2}} dx$$

(f)
$$\int \tan^3(x) \sec^2(x) dx$$

- 2. Evaluate $\int_0^{\pi} \sin^2(mx) dx$ for m any nonzero integer.
- 3. Evaluate the integral using integration by parts as a first step

$$\int \frac{\arcsin(x)}{x^2} dx$$

- 4. Solve the integral $\int \frac{dx}{x^2-1}$ in the following ways and verify that the answers agree.
 - a.) trigonometric substitution
 - b.) use the partial fraction decomposition

$$\frac{1}{x^2 - 1} = \frac{1/2}{x - 1} - \frac{1/2}{x + 1}$$

5. Find the partial fraction decomposition of the following rational functions. Do **NOT** evaluate any integrals (unless you really want to...).

(a)
$$\frac{x^2 + 4x + 12}{(x+2)(x^2+4)}$$

(b)
$$\frac{x^2 - 4x + 8}{(x-1)^2(x-2)^2}$$

6. A function f is know to have a fourth derivative with the property that $|f^{(4)}(x)| \leq 6$ on [-1,5]. Determine how many subintervals are required so that the Simpson rule used to approximate

$$\int_{-1}^{5} f(x) dx \text{ incurs an error less than .0001.}$$

7. A table of values for a continuous function f is shown below. If four equal subintervals of [0,2] are used, what is the Simpsons rule approximation for $\int_0^2 f(x) dx$?

X	0.0	0.5	1.0	1.5	2.0
f(x)	2	8	6	12	10

8. For each of the following integrals, decide which is improper. For the improper integrals, set up **BUT DO NOT EVALUATE** the corresponding limit problem.

(a)
$$\int_{-\infty}^{3} x^2 dx$$

(c)
$$\int_{\frac{\pi}{3}}^{\frac{2\pi}{3}} \tan \theta \ d\theta$$

(b)
$$\int_{-\infty}^{\infty} \frac{1}{1+x^2} dx$$

(d)
$$\int_0^{10000} \ln(x^2 + 1) dx$$

9. For the integrals below, determine if the integral is convergent or divergent. Evaluate the convergent integrals.

(a)
$$\int_1^\infty \frac{1}{x^{3/2}} \ dx$$

(d)
$$\int_{1}^{\infty} \frac{1 + e^{-x}}{\sqrt{x}} dx$$
 (Hint: see whether
$$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$$
 is convergent or divergent)

(b)
$$\int_{-\infty}^{\infty} x e^{-x^2} dx$$

(e)
$$\int_{-1}^{0} \frac{e^{1/x}}{x^3} dx$$

(c)
$$\int_4^\infty \frac{1}{x} dx$$

(f)
$$\int_0^2 \frac{x}{x-1} \ dx$$